p48 Activates a UV-damaged-DNA binding factor and is defective in xeroderma pigmentosum group E cells that lack binding activity.

نویسندگان

  • B J Hwang
  • S Toering
  • U Francke
  • G Chu
چکیده

A subset of xeroderma pigmentosum (XP) group E cells lack a factor that binds to DNA damaged by UV radiation. This factor can be purified to homogeneity as p125, a 125-kDa polypeptide. However, when cDNA encoding p125 is translated in vitro, only a small fraction binds to UV-damaged DNA, suggesting that a second factor is required for the activation of p125. We discovered that most hamster cell lines expressed inactive p125, which was activated in somatic cell hybrids containing human chromosome region 11p11.2-11cen. This region excluded p125 but included p48, which encodes a 48-kDa polypeptide known to copurify with p125 under some conditions. Expression of human p48 activated p125 binding in hamster cells and increased p125 binding in human cells. No such effects were observed from expression of p48 containing single amino acid substitutions from XP group E cells that lacked binding activity, demonstrating that the p48 gene is defective in those cells. Activation of p125 occurred by a "hit-and-run" mechanism, since the presence of p48 was not required for subsequent binding. Nevertheless, p48 was capable of forming a complex with p125 either bound to UV-damaged DNA or in free solution. It is notable that hamster cells fail to efficiently repair cyclobutane pyrimidine dimers in nontranscribed DNA and fail to express p48, which contains a WD motif with homology to proteins that reorganize chromatin. We propose that p48 plays a role in repairing lesions that would otherwise remain inaccessible in nontranscribed chromatin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

True XP group E patients have a defective UV-damaged DNA binding protein complex and mutations in DDB2 which reveal the functional domains of its p48 product.

Xeroderma pigmentosum (XP) is a skin cancer-prone autosomal recessive disease characterized by inability to repair UV-induced DNA damage. The major form of XP is defective in nucleotide excision repair (NER) and comprises seven complementation groups (A-G). The genes defective in all groups have been identified unambiguously with the exception of group E. The cells of some XP-E patients are def...

متن کامل

Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation.

The UV-damaged DNA binding protein complex (UV-DDB) is implicated in global genomic nucleotide excision repair (NER) in mammalian cells. The complex consists of a heterodimer of p127 and p48. UV-DDB is defective in one complementation group (XP-E) of the heritable, skin cancer-prone disorder xeroderma pigmentosum. Upon UV irradiation of primate cells, UV-DDB associates tightly with chromatin, c...

متن کامل

Human damage-specific DNA-binding protein p48. Characterization of XPE mutations and regulation following UV irradiation.

Damage-specific DNA binding (DDB) activity purifies from HeLa cells as a heterodimer (p127 and p48) and is absent from cells of a subset (Ddb(-)) of xeroderma pigmentosum Group E (XPE) patients. Each subunit was overexpressed in insect cells and purified. Both must be present for the damaged DNA band shift characteristic of the HeLa heterodimer. However, overexpressed p48 peptides containing th...

متن کامل

In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product.

The initial step in mammalian nucleotide excision repair (NER) of the major UV-induced photoproducts, cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs), requires lesion recognition. It is believed that the heterodimeric proteins XPC/hHR23B and UV-DDB (UV-damaged DNA binding factor, composed of the p48 and p127 subunits) perform this function in genomic DNA, but their requireme...

متن کامل

DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair.

Damaged DNA-binding protein, DDB, is a heterodimer of p127 and p48 with a high specificity for binding to several types of DNA damage. Mutations in the p48 gene that cause the loss of DDB activity were found in a subset of xeroderma pigmentosum complementation group E (XP-E) patients and have linked to the deficiency in global genomic repair of cyclobutane pyrimidine dimers (CPDs) in these cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 18 7  شماره 

صفحات  -

تاریخ انتشار 1998